

Matrix Calculus

In this Appendix we collect some useful formulas of matrix calculus that often appear in finite element derivations.

§D.1 THE DERIVATIVES OF VECTOR FUNCTIONS

Let **x** and **y** be vectors of orders *n* and *m* respectively:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, \qquad (D.1)$$

where each component y_i may be a function of all the x_j , a fact represented by saying that **y** is a function of **x**, or

$$\mathbf{y} = \mathbf{y}(\mathbf{x}). \tag{D.2}$$

If n = 1, **x** reduces to a scalar, which we call x. If m = 1, **y** reduces to a scalar, which we call y. Various applications are studied in the following subsections.

§D.1.1 Derivative of Vector with Respect to Vector

The derivative of the vector **y** with respect to vector **x** is the $n \times m$ matrix

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \frac{\partial y_2}{\partial x_n} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$
(D.3)

§D.1.2 Derivative of a Scalar with Respect to Vector

If *y* is a scalar,

$$\frac{\partial y}{\partial \mathbf{x}} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_n} \end{bmatrix}.$$
(D.4)

§D.1.3 Derivative of Vector with Respect to Scalar

If *x* is a scalar,

$$\frac{\partial \mathbf{y}}{\partial x} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial y_1}{\partial x} & \frac{\partial y_2}{\partial x} & \dots & \frac{\partial y_m}{\partial x} \end{bmatrix}$$
(D.5)

REMARK D.1

Many authors, notably in statistics and economics, define the derivatives as the transposes of those given above.¹ This has the advantage of better agreement of matrix products with composition schemes such as the chain rule. Evidently the notation is not yet stable.

EXAMPLE D.1

Given

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
(D.6)

and

$$y_1 = x_1^2 - x_2$$

$$y_2 = x_3^2 + 3x_2$$
(D.7)

the partial derivative matrix $\partial \mathbf{y} / \partial \mathbf{x}$ is computed as follows:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} \\ \frac{\partial y_1}{\partial x_3} & \frac{\partial y_2}{\partial x_3} \end{bmatrix} = \begin{bmatrix} 2x_1 & 0 \\ -1 & 3 \\ 0 & 2x_3 \end{bmatrix}$$
(D.8)

§D.1.4 Jacobian of a Variable Transformation

In multivariate analysis, if **x** and **y** are of the same order, the determinant of the square matrix $\partial \mathbf{x} / \partial \mathbf{y}$, that is

$$J = \left| \frac{\partial \mathbf{x}}{\partial \mathbf{y}} \right| \tag{D.9}$$

is called the *Jacobian* of the transformation determined by $\mathbf{y} = \mathbf{y}(\mathbf{x})$. The inverse determinant is

$$J^{-1} = \left| \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \right|. \tag{D.10}$$

¹ One authors puts is this way: "When one does matrix calculus, one quickly finds that there are two kinds of people in this world: those who think the gradient is a row vector, and those who think it is a column vector."

EXAMPLE D.2

The transformation from spherical to Cartesian coordinates is defined by

$$x = r \sin \theta \cos \psi, \qquad y = r \sin \theta \sin \psi, \qquad z = r \cos \theta$$
 (D.11)

where $r > 0, 0 < \theta < \pi$ and $0 \le \psi < 2\pi$. To obtain the Jacobian of the transformation, let

$$\begin{array}{ll} x \equiv x_1, & y \equiv x_2, & z \equiv x_3 \\ r \equiv y_1, & \theta \equiv y_2, & \psi \equiv y_3 \end{array}$$
 (D.12)

Then

$$J = \left| \frac{\partial \mathbf{x}}{\partial \mathbf{y}} \right| = \left| \begin{array}{ccc} \sin y_2 \cos y_3 & \sin y_2 \sin y_3 & \cos y_2 \\ y_1 \cos y_2 \cos y_3 & y_1 \cos y_2 \sin y_3 & -y_1 \sin y_2 \\ -y_1 \sin y_2 \sin y_3 & y_1 \sin y_2 \cos y_3 & 0 \end{array} \right|$$
(D.13)
$$= y_1^2 \sin y_2 = r^2 \sin \theta.$$

The foregoing definitions can be used to obtain derivatives to many frequently used expressions, including quadratic and bilinear forms.

EXAMPLE D.3

Consider the quadratic form

$$y = \mathbf{x}^T \mathbf{A} \mathbf{x} \tag{D.14}$$

where A is a square matrix of order n. Using the definition (D.3) one obtains

$$\frac{\partial y}{\partial \mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{A}^T \mathbf{x}$$
(D.15)

and if A is symmetric,

$$\frac{\partial y}{\partial \mathbf{x}} = 2\mathbf{A}\mathbf{x}.\tag{D.16}$$

We can of course continue the differentiation process:

$$\frac{\partial^2 y}{\partial \mathbf{x}^2} = \frac{\partial}{\partial \mathbf{x}} \left(\frac{\partial y}{\partial \mathbf{x}} \right) = \mathbf{A} + \mathbf{A}^T, \tag{D.17}$$

and if A is symmetric,

$$\frac{\partial^2 y}{\partial \mathbf{x}^2} = 2\mathbf{A}.\tag{D.18}$$

The following table collects several useful vector derivative formulas.

У	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$
Ax	\mathbf{A}^{T}
$\mathbf{x}^T \mathbf{A}$	Α
$\mathbf{x}^T \mathbf{x}$	2 x
$\mathbf{x}^T \mathbf{A} \mathbf{x}$	$\mathbf{A}\mathbf{x} + \mathbf{A}^T\mathbf{x}$

§D.2 THE CHAIN RULE FOR VECTOR FUNCTIONS

Let

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} , \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_r \end{bmatrix} \text{ and } \mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{bmatrix}$$
(D.19)

where z is a function of y, which is in turn a function of x. Using the definition (D.2), we can write

$$\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right)^{T} = \begin{bmatrix} \frac{\partial z_{1}}{\partial x_{1}} & \frac{\partial z_{1}}{\partial x_{2}} & \cdots & \frac{\partial z_{1}}{\partial x_{n}} \\ \frac{\partial z_{2}}{\partial x_{1}} & \frac{\partial z_{2}}{\partial x_{2}} & \cdots & \frac{\partial z_{2}}{\partial x_{n}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial z_{m}}{\partial x_{1}} & \frac{\partial z_{m}}{\partial x_{2}} & \cdots & \frac{\partial z_{m}}{\partial x_{n}} \end{bmatrix}$$
(D.20)

Each entry of this matrix may be expanded as

$$\frac{\partial z_i}{\partial x_j} = \sum_{q=1}^r \frac{\partial z_i}{\partial y_q} \frac{\partial y_q}{\partial x_j} \qquad \begin{cases} i = 1, 2, \dots, m\\ j = 1, 2, \dots, n. \end{cases}$$
(D.21)

Then

$$\begin{pmatrix} \frac{\partial \mathbf{z}}{\partial \mathbf{x}} \end{pmatrix}^{T} = \begin{bmatrix} \sum \frac{\partial z_{1}}{y_{q}} \frac{\partial y_{q}}{\partial x_{1}} & \sum \frac{\partial z_{1}}{\partial y_{q}} \frac{\partial y_{q}}{\partial x_{2}} & \cdots & \sum \frac{\partial z_{2}}{\partial y_{q}} \frac{\partial y_{q}}{\partial x_{n}} \\ \sum \frac{\partial z_{2}}{\partial y_{q}} \frac{\partial y_{q}}{\partial x_{1}} & \sum \frac{\partial z_{2}}{\partial y_{q}} \frac{\partial y_{q}}{\partial x_{2}} & \cdots & \sum \frac{\partial z_{2}}{\partial y_{q}} \frac{\partial y_{q}}{\partial x_{n}} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\partial z_{1}}{\partial y_{1}} & \frac{\partial z_{1}}{\partial y_{2}} & \cdots & \frac{\partial z_{1}}{\partial y_{r}} \\ \frac{\partial z_{2}}{\partial y_{1}} & \frac{\partial z_{2}}{\partial y_{2}} & \cdots & \frac{\partial z_{2}}{\partial y_{r}} \end{bmatrix} \begin{bmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{2}}{\partial x_{n}} \end{bmatrix}$$
$$= \begin{pmatrix} \frac{\partial \mathbf{z}_{m}}{\partial y_{1}} & \frac{\partial z_{m}}{\partial y_{2}} & \cdots & \frac{\partial z_{m}}{\partial y_{r}} \\ \vdots & & & \\ \frac{\partial z_{m}}{\partial y_{1}} & \frac{\partial z_{m}}{\partial y_{2}} & \cdots & \frac{\partial z_{m}}{\partial y_{r}} \end{bmatrix}^{T} = \begin{pmatrix} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \end{pmatrix}^{T}.$$
(D.22)

On transposing both sides, we finally obtain

$$\frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \frac{\partial \mathbf{z}}{\partial \mathbf{y}},\tag{D.23}$$

which is the *chain rule* for vectors. If all vectors reduce to scalars,

$$\frac{\partial z}{\partial x} = \frac{\partial y}{\partial x}\frac{\partial z}{\partial y} = \frac{\partial z}{\partial y}\frac{\partial y}{\partial x},$$
(D.24)

which is the conventional chain rule of calculus. Note, however, that when we are dealing with vectors, the chain of matrices builds "toward the left." For example, if \mathbf{w} is a function of \mathbf{z} , which is a function of \mathbf{y} , which is a function of \mathbf{x} ,

$$\frac{\partial \mathbf{w}}{\partial \mathbf{x}} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \frac{\partial \mathbf{w}}{\partial \mathbf{z}}.$$
 (D.25)

On the other hand, in the ordinary chain rule one can indistictly build the product to the right or to the left because scalar multiplication is commutative.

§D.3 THE DERIVATIVE OF SCALAR FUNCTIONS OF A MATRIX

Let $\mathbf{X} = (x_{ij})$ be a matrix of order $(m \times n)$ and let

$$y = f(\mathbf{X}), \tag{D.26}$$

be a scalar function of **X**. The derivative of y with respect to **X**, denoted by

$$\frac{\partial y}{\partial \mathbf{X}},$$
 (D.27)

is defined as the following matrix of order $(m \times n)$:

$$\mathbf{G} = \frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{12}} & \cdots & \frac{\partial y}{\partial x_{1n}} \\ \frac{\partial y}{\partial x_{21}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{2n}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial y}{\partial x_{m1}} & \frac{\partial y}{\partial x_{m2}} & \cdots & \frac{\partial y}{\partial x_{mn}} \end{bmatrix} = \begin{bmatrix} \frac{\partial y}{\partial x_{ij}} \end{bmatrix} = \sum_{i,j} \mathbf{E}_{ij} \frac{\partial y}{\partial x_{ij}}, \quad (D.28)$$

where \mathbf{E}_{ij} denotes the elementary matrix^{*} of order $(m \times n)$. This matrix **G** is also known as a *gradient matrix*.

EXAMPLE D.4

Find the gradient matrix if y is the trace of a square matrix **X** of order n, that is

$$y = tr(\mathbf{X}) = \sum_{i=1}^{n} x_{ii}.$$
 (D.29)

Obviously all non-diagonal partials vanish whereas the diagonal partials equal one, thus

$$\mathbf{G} = \frac{\partial y}{\partial \mathbf{X}} = \mathbf{I},\tag{D.30}$$

where **I** denotes the identity matrix of order *n*.

^{*} The elementary matrix \mathbf{E}_{ij} of order $m \times n$ has all zero entries except for the (i, j) entry, which is one.

§D.3.1 Functions of a Matrix Determinant

An important family of derivatives with respect to a matrix involves functions of the determinant of a matrix, for example $y = |\mathbf{X}|$ or $y = |\mathbf{AX}|$. Suppose that we have a matrix $\mathbf{Y} = [y_{ij}]$ whose components are functions of a matrix $\mathbf{X} = [x_{rs}]$, that is $y_{ij} = f_{ij}(x_{rs})$, and set out to build the matrix

$$\frac{\partial |\mathbf{Y}|}{\partial \mathbf{X}}.$$
 (D.31)

Using the chain rule we can write

$$\frac{\partial |\mathbf{Y}|}{\partial x_{rs}} = \sum_{i} \sum_{j} \mathbf{Y}_{ij} \frac{\partial |\mathbf{Y}|}{\partial y_{ij}} \frac{\partial y_{ij}}{\partial x_{rs}}.$$
 (D.32)

But

$$|\mathbf{Y}| = \sum_{j} y_{ij} \mathbf{Y}_{ij}, \tag{D.33}$$

where \mathbf{Y}_{ij} is the *cofactor* of the element y_{ij} in $|\mathbf{Y}|$. Since the cofactors \mathbf{Y}_{i1} , \mathbf{Y}_{i2} , ... are independent of the element y_{ij} , we have

$$\frac{\partial |\mathbf{Y}|}{\partial y_{ij}} = \mathbf{Y}_{ij}.\tag{D.34}$$

It follows that

$$\frac{\partial |\mathbf{Y}|}{\partial x_{rs}} = \sum_{i} \sum_{j} \mathbf{Y}_{ij} \frac{\partial y_{ij}}{\partial x_{rs}}.$$
 (D.35)

There is an alternative form of this result which is ocassionally useful. Define

$$a_{ij} = \mathbf{Y}_{ij}, \quad \mathbf{A} = [a_{ij}], \qquad b_{ij} = \frac{\partial y_{ij}}{\partial x_{rs}}, \quad \mathbf{B} = [b_{ij}].$$
 (D.36)

0

Then it can be shown that

$$\frac{\partial |\mathbf{Y}|}{\partial x_{rs}} = \operatorname{tr}(\mathbf{A}\mathbf{B}^T) = \operatorname{tr}(\mathbf{B}^T\mathbf{A}).$$
(D.37)

EXAMPLE D.5

If **X** is a nonsingular square matrix and $\mathbf{Z} = |\mathbf{X}|\mathbf{X}^{-1}$ its cofactor matrix,

$$\mathbf{G} = \frac{\partial |\mathbf{X}|}{\partial \mathbf{X}} = \mathbf{Z}^T. \tag{D.38}$$

If **X** is also symmetric,

$$\mathbf{G} = \frac{\partial |\mathbf{X}|}{\partial \mathbf{X}} = 2\mathbf{Z}^T - \operatorname{diag}(\mathbf{Z}^T).$$
(D.39)

D-7

§D.4 THE MATRIX DIFFERENTIAL

For a scalar function $f(\mathbf{x})$, where \mathbf{x} is an *n*-vector, the ordinary differential of multivariate calculus is defined as

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i.$$
(D.40)

In harmony with this formula, we define the differential of an $m \times n$ matrix $\mathbf{X} = [x_{ij}]$ to be

$$d\mathbf{X} \stackrel{\text{def}}{=} \begin{bmatrix} dx_{11} & dx_{12} & \dots & dx_{1n} \\ dx_{21} & dx_{22} & \dots & dx_{2n} \\ \vdots & \vdots & & \vdots \\ dx_{m1} & dx_{m2} & \dots & dx_{mn} \end{bmatrix}.$$
 (D.41)

This definition complies with the multiplicative and associative rules

$$d(\alpha \mathbf{X}) = \alpha \, d\mathbf{X}, \qquad d(\mathbf{X} + \mathbf{Y}) = d\mathbf{X} + d\mathbf{Y}. \tag{D.42}$$

If **X** and **Y** are product-conforming matrices, it can be verified that the differential of their product is

$$d(\mathbf{X}\mathbf{Y}) = (d\mathbf{X})\mathbf{Y} + \mathbf{X}(d\mathbf{Y}). \tag{D.43}$$

which is an extension of the well known rule d(xy) = y dx + x dy for scalar functions.

EXAMPLE D.6

If $\mathbf{X} = [x_{ij}]$ is a square nonsingular matrix of order *n*, and denote $\mathbf{Z} = |\mathbf{X}|\mathbf{X}^{-1}$. Find the differential of the determinant of \mathbf{X} :

$$d|\mathbf{X}| = \sum_{i,j} \frac{\partial |\mathbf{X}|}{\partial x_{ij}} dx_{ij} = \sum_{i,j} \mathbf{X}_{ij} dx_{ij} = \operatorname{tr}(|\mathbf{X}|\mathbf{X}^{-1})^T d\mathbf{X}) = \operatorname{tr}(\mathbf{Z}^T d\mathbf{X}), \quad (D.44)$$

where X_{ij} denotes the cofactor of x_{ij} in **X**.

EXAMPLE D.7

With the same assumptions as above, find $d(\mathbf{X}^{-1})$. The quickest derivation follows by differentiating both sides of the identity $\mathbf{X}^{-1}\mathbf{X} = \mathbf{I}$:

$$d(\mathbf{X}^{-1})\mathbf{X} + \mathbf{X}^{-1}\,d\mathbf{X} = \mathbf{0},\tag{D.45}$$

from which

$$d(\mathbf{X}^{-1}) = -\mathbf{X}^{-1} \, d\mathbf{X} \, \mathbf{X}^{-1}. \tag{D.46}$$

If **X** reduces to the scalar x we have

$$d\left(\frac{1}{x}\right) = -\frac{dx}{x^2}.$$
 (D.47)