
R Command Summary

Steve Ambler∗

Département des sciences économiques
École des sciences de la gestion

Université du Québec à Montréal
c© 2018 : Steve Ambler

April 2018

This document describes some of the basic R commands. It should prove useful as a
short introduction to R with an emphasis on its use in econometrics.1

Note that all commands in R are case-sensitive. Linux and Unix users should be used
to this. This is one of the most common sources of error for Windows users.

In what follows, “R>” is the command prompt. Type only what follows the command
prompt.

Basic

Start an R session: R> R
Start an R session as root (Linux): R> sudo R
Quit an R session: R> quit()
Quit an R session: R> q()
Get working directory: R> getwd()
Change working directory: R> setwd("/home/username/path")
List files in current directory: R> list.files()
List files in current directory: R> dir()
Invoke help pages: R> help.start()
Help on command lm: R> help(lm)
Help on command lm: R> ?lm
Example using lm R> example("lm")
Arguments of command lm R> args(lm)
Load package AER: R> library("AER")
Install package AER: R> install.packages("AER")

∗ambler.steven@uqam.ca.
1It should cover many of the commands needed for the assignments in ECO4272.

1

mailto:ambler.steven@uqam.ca


The example(·) command is particularly useful. For any (almost any?) command
available in R, the command will execute a simple example of the command and show
the output it produces, with explanations.

Using Commands from Libraries
Some R commands are defined by default or included in the base version of the program
when it is first loaded into memory. Others are contained in packages that must first
be installed and then loaded into memory before they can be used. For example, the
kurtosis and skewness commands in the section below on statistical functions
are not defined by default. They are available in the “moments” package. If a needed
package is not installed it can be with the command install.packages(·).2

Note that under Linux packages are installed by default in directories that have system-
wide access and that are not writable by ordinary users. It is better to start up a tem-
porary R session as root (or administrator or super-user) before invoking the command
install.packages(·). To do this, start R using the command sudo R. If you
install packages as an ordinary user, they will be installed in your home directory and
will not in general be available to other users.

Other examples include the coeftest(·) command, which is from the “lmtest”
package, using the heteroskedasticity-consistent (robust) variance-covariance matrix
vcovHC from the “sandwich” package. Load such packages into memory using the
library(·) command. See the previous section for usage.

Elementary Commands
Assignment operator: < −
Assignment operator: =
List all objects: R> ls()
List details of all objects: R> ls.str()
List details of myobject: R> str(myobject)
List files in current directory: R> list.files()
List files in current directory: R> dir()
Print (to the screen) myobject: R> myobject
Remove myobject from memory: R> rm(myobject)
Remove all objects in working space: R> rm(list=ls())

2In Linux, packages can be installed while running R using the install.packages(·) command.
When running R as an ordinary user, the commands will be installed in a subdirectory of the user’s home
directory and will therefore only be available to that user. It is usually advisable to run R as root (superuser)
and then install the needed packages. They will then be installed in a default sub-directory of a directory
containing system-wide commands (generally, I believe, /usr/bin/R/), and will be available to all users
on a shared machine. The other advantage is that the user’s home directory does not become cluttered
with extraneous sub-directories. In some distributions, for example Debian and Ubuntu, many (not all)
packages are available in the distribution’s own package repositories and can therefore be installed using the
distribution’s package manager, without starting R itself.

2



Data Management
In order to estimate an econometric model or to analyze the properties of a data set, the
first step invariably is to load the data into memor. R has a native format for storing data
in data frames. It also allows the user to import data that have been saved in other
formats (see below). Some data frames are contained in R packages. For example,
the package AER (for “Applied Econometrics in R”) has several data frames, including
GrowthDJ, a cross-country data set of macroeconomic variables related to economic
growth. Say we want to load the data frame GrowthDJ: from the R library AER. We
would use the command

R> data("GrowthDJ", package="AER")

In order to be able to perform functions on variables within a data set, it can be “at-
tached”. This adds the data set to the search path so, when you refer to a variable R
searches the data set itself for the variable’s name.

R> attach(GrowthDJ)

There is a possible drawback to doing this. All of the variable names in the data set
become defined in R. If there is a conflict between a named variable and a pre-defined
command in R (either in the default version of R or in a user-loaded library) this can
lead to errors. Some guides to R recommend against using attach(·) for this reason.

Other Formats

We often need to read data that have been stored in text format. The following reads
the contents of the file tmp.txt and assigns it to an object named mydata.

R> FILE <- http://people.su.se/ ma/R intro/data/tmp.txt
R> mydata <- read.table(file = FILE, header = TRUE)
R> mydata

The data file has a first row with variable names: hence the use of the header =
TRUE option. If the columns in the file were separated by commas, the syntax would
be

mydata <- read.table(file = FILE, header = TRUE, sep=",")

We often need to read data that have been saved in other formats by other econometrics
or statistical packages, for example STATA data files. We can use the foreign library
to do this. See the documentation for this library on all the formats that are supported.
First enable the foreign package.

R> library(foreign)

3



Now import the data from the file mydata.dta.

R> lnu < − read.dta(file = "wage.dta")

We can also export R data into other formats. To export data into a STATA file, use

R> write.dta(mydata, file = "mydata.dta")

For further information on importing and exporting data from other data formats, see
the article “R Data Import/Export” available at the following address.

https://cran.r-project.org/doc/manuals/R-data.pdf

Data are often available in the form of Excel spreadsheets. It is probably advisable to
use Excel itself to write out the data to a text file and then use the read.table(·)
command described above. In fact, the “R Data Import/Export” document referred to
above advises, “The first piece of advice is to avoid doing so if possible!”

There is at least one package, called xlsx, that will allow the user to import Excel
data files directly. Study the documentation carefully and check the results. See the
following link for more information. Use at your own risk!

https://www.datacamp.com/community/tutorials/r-tutorial-read-excel-into-r#
gs.3M349Ic

Saving Output
Once we have analyzed a data set and estimated an econometric model, we very often
want to or need to save the results. Say we have estimated the model cars and want
to save the output in a file. We can do this using sink():

R> sink(file = "test.txt", type = "output")
R> summary(cars)
R> sink()

The last command turns off output to the file. Estimation output can also be saved in
LATEX format. Note that saving output in text form is different from saving a graph.
On the latter, see the next section.

Saving Graphics Output
Quite often, after generating a graphic, we want to save it in its own file. For example,
saving a graph in pdf format means it can easily be imported into a LATEX document.
When a graphics command is executed, its output is displayed by default in a separate
graphics window that is opened on the screen. If we want the output into a file, we
have to do the following.

4

https://cran.r-project.org/doc/manuals/R-data.pdf
https://www.datacamp.com/community/tutorials/r-tutorial-read-excel-into-r#gs.3M349Ic
https://www.datacamp.com/community/tutorials/r-tutorial-read-excel-into-r#gs.3M349Ic


R> pdf("filename.pdf")
R> plot(x,y)
R> dev.off()

The last command turns off output to the file. Many other graphics formats are avail-
able, such as png, jpeg, bmp, Postscript, etc.

Basic Descriptive Statistics
R> mean(myvariable)
R> median(myvariable)
R> var(myvariable)
R> sd(myvariable)
R> cov(myvariable1,myvariable2)
R> cor(myvariable1,myvariable2)
R> max(myvariable)
R> min(myvariable)
R> quantile(myvariable, 1:9/10)
R> kurtosis(myvariable)
R> skewness(myvariable)

The last two functions are not defined by default. They are available in the
moments package, available from the R site and installable using the command
install.packages("moments"). Note that the kurtosis command calcu-
lates the Pearson measure of kurtosis, which is already normalized by dividing by the
square of the variance. This measure can be directly compared to the normalized kur-
tosis of the normal distribution (equal to three) to see whether a particular data series
seems to come from a leptokurtic (kurtosis greater than three) distribution or not.

Use the following command for a basic set of summary statistics for all variables in a
particular data set (dataframe).

R> summary(mydataframe)

The command summary can be applied to a single variable as well as an entire
dataframe. As is typical in R, everything from a single variable to a dataframe is an
object and many commands can be applied to objects of different types.

Functions Related to Probability Distributions
R contains very powerful functions to manipulate probability distributions. The
help(·) command is very useful for learning what can be done in this regard. For a
given probability distribution, R contains four basic functions. For example, with the
univariate normal distribution we have

R> dnorm(x, mean=0, sd=1, log = FALSE)
R> pnorm(q, mean=0, sd=1, lower.tail=TRUE, log.p = FALSE)

5



R> qnorm(p, mean=0, sd=1, lower.tail=TRUE, log.p = FALSE)
R> rnorm(n, mean=0, sd=1)

The function rnorm(·) will generate n pseudo-random values drawn from the normal
distribution with the specified mean and standard deviation. If the mean and standard
deviation are not specified, the standard normal distribution is assumed.

The function that students in ECO4272 will use most often is pnorm(·). Once again,
if the mean and standard deviation are not specified, the standard normal is assumed.
For a standardized t statistic, this function can be used to calculate the area to the
left of the statistic, so it is just the cumulative standard normal distribution function.
For example, pnorm(1.96) gives approximately 0.975 and pnorm(-1.96) gives
approximately 0.025.

The function dnorm(·) evaluates the normal density at a point or points. Students in
ECO4272 will not have much occasion to use this function.

The qnorm(·) function can be quite useful. Think of it as giving the value of the
standardized t statistic for which the p-value is the argument of the function. For
example, qnorm(0.975) gives approximately 1.96. If you need to know what is
the (absolute) value of the t statistic you need to reject at 1% for a two-tailed test, use
qnorm(0.995), which gives approximately 2.576.

For other types of probability distributions, the arguments of the command are adapted
to depend on the parameters of the distribution. For example, in the case of the uniform
distribution, the following command generates n values drawn from the uniform distri-
bution with the support [a, b]. (The only relevant parameters of the uniform distribution
are its minimum and maximum values.)

R> runif(n, min=a, max=b)

For information on how to input the parameters of other distributions, use the help(·)
and args(·) commands.

Executing a Script
By default, R starts an interactive section with input from the keyboard and output dis-
played in the terminal window. If you have a large number of commands to execute in
a particular sequence, this can be inconvenient. It is possible to write these commands
in a text file (script). The script can be executed with the command

R> source("myfile.R")

Any text appearing after “#” is ignored by the R interpreter, so comments and explana-
tions can easily be included in an R script by prefacing them with the “#” character.

It is standard practice to use filenames with an “R” extension when saving scripts to
files.

6



Quite often you will want to stop the execution of a script in order to examine some of
the output produced by the script, such as a summary table of regression results or a
plot. In order to stop the execution of a script until a key on the keyboard is pressed,
use the command

R> readline(prompt="Press [enter] to continue")

Basic Graphs
R> x <- rnorm(100)
R> plot(x)
R> hist(x)

The first command generates 100 pseudo-random variables from a standardized normal
distribution and places them in the vector x. The plot(·) command creates a basic
plot, and the hist(·) command creates a basic histogram.

The most useful option of the hist(·) command is probably freq=FALSE, which
restricts the total area under the histogram to be equal to one, which is often appropriate
when plotting approximations to density functions. Use

R> hist(x, freq = FALSE)

The graphics capabilities of R are quite powerful. I would strongly advise consulting a
reference book or article on R graphics to see what’s available.

Linear Regression
R> model1 <- lm(Y X1 + X2 + X3)

This is the basic command for estimating a linear regression model with the dependent
variable Y and explanatory variables X1, X2 and X3. The default is to add a constant
term. Here, the regression output is assigned to the object model1. Like most things
in R, this is an object, which has certain default properties. A detailed summary of the
regression output can be obtained with:

R> summary(model1)

By default, the standard errors that R calculates are non-robust. In order to generate
robust standard errors, use:

R> coeftest(model1, vcov = vcovHC)

The coeftest(·) command is contained in the package lmtest, which must be
installed and loaded into memory. Furthermore, the vcov=vcovHC option involves
calculating the heteroscedasticity-consistent variance-covariance matrix which relies

7



on the package sandwich, which must be installed and loaded into memory. In turn,
the sandwich package imports zoo and stats, which must be available (install
them before using sandwich). The stats package should be part of almost any
base R installation.

Since model1 is an object defined in R, other commands can be applied to it. For
example,

Some useful commands that operate on the object that results from estimating a linear
model include the following. I assume here that model1 is the object containing the
regression results. Consult the help command for options.

Summary of regression results: R> summary(model1)
Set of diagnostic plots: R> plot(model1)
Model residuals: R> resid1 < − resids(model1)
Model fitted values: R> fitted.values(model1)
Coefficients table: R> coef(summary(model1))
Variance-covariance matrix of coefficients: vcov(model1)
Coefficient confidence intervals: confint(model1)
Residual sum of squares: deviance(model1)
Analysis of variance of results: anova(model1)

Linear hypothesis testing can be conducted with the linearHypothesis(·) com-
mand, which works with both the non-robust and robust versions of the variance-
covariance matrix od the coefficients.

I would strongly advise consulting the documentation on this command. The basic
way of using it is relatively straightforward, but quite a few options and short cuts are
available. The first argument of the command will typically be the name of a model
estimated by linear regression using lm(·). The second argument will typically be the
R matrix and the third argument will be the r vector when the set of linear restrictions
is written as Rβ = r, where β is the vector of model parameters. It is necessary to
learn some basic commands for defining matrices and their elements. Here, I illustrate
with an example.

R> linearHypothesis(unr,bigr,littler)

Here, unr is the name of the estimated (unrestricted) linear model, bigr is the R ma-
trix, and littler is the r vector. To use the robust version of the variance-covariance
matrix, use

R> linearHypothesis(unr,bigr,littler,white.adjust=HC)

Let’s say the estimated model includes 4 explanatory variables in addition to the con-
stant term, and we want to test the joint significance of the first two. In this case R is
given by [

0 1 0 0 0
0 0 1 0 0

]

8



and r is [
0
0

]
.

We would set these up in R as follows.

R> bigr <- rbind(c(0,1,0,0,0),c(0,0,1,0,0))
R> littler <- rbind(0,0)

For more details use help(rbind).

I strongly suggest reading through the commented scripts in the lecture notes on the
simple regression model and the multiple regression model. These scripts illustrate how
to load data, estimate a model, calculate robust standard errors, and save the output to
a file.

This version: 05/04/2018

9


